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J. Phys. A: Math. Gen. 16 (1983) 4053-4065. Printed in Great Britain 

Migdal transformations of 0 (2)-symmetric spin 
Hamiltonians 

Michael N Barber 
Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, 
CA 93106, USA and Department of Applied Mathematics?, University of New South 
Wales, PO Box 1, Kensington, NSW 2032, Australia 

Received 9 May 1983 

Abstract. The existence of a massless phase in several different two-dimensional O(2) -  
symmetric spin models is investigated within the approximate Migdal/Kadanoff renormali- 
sation transformation. The models investigated include the planar rotor model, the 
truncated model used by Nienhuis to derive exact results for 0(2)-symmetric models, and 
the step model of Guttmann and Joyce. The truncated model is found to exhibit a ‘fixed’ 
line similar to that seen in the planar rotor model, but only for values of the coupling for 
which the model is unphysical. The step model is found to be always disordered, but a 
variant exhibits a fixed line. The significance of the results beyond the Migdal approxima- 
tion is assessed. 

1. Introduction 

Some years ago, Jose et a1 (1977) used a simple Migdal-Kadanoff recursion relation 
(Migdal 1975, Kadanoff 1976) to study the two-dimensional planar rotor or classical 
x y  model. This model exhibits a massless low-temperature phase terminated by a 
vortex unbinding (Kosterlitz-Thouless) transition (Kosterlitz and Thouless 1973, 
Kosterlitz 1974, JosC et a1 1977). Within a renormalisation group transformation 
such a phase should correspond to a fixed line. While the Migdal approximation does 
not possess an exact fixed line (Migdal 1975, Wilson 1976, JosC et a1 1977), JosC et 
a1 (1977) found numerically that successive iterations of the planar model for 
sufficiently low temperature appeared effectively to approach a non-trivial fixed point 
Hamiltonian closely approximating the Villain model (Villain 1975). Consequently, 
a semi-quantitative picture of the behaviour of the planar model could be obtained 
from the Migdal approximation despite the absence of a true fixed line. 

The planar model is specified by the (reduced) Hamiltonian 

where the sum is over all nearest-neighbour bonds of a two-dimensional lattice. 
Universality, however, implies that the critical behaviour of the model should not 
depend upon the particular interaction function (the cosine) appearing in (1.1); the 
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crucial features being the two-dimensionality of the lattice, the short-ranged interac- 
tion, and, in particular, the global 0(2)-symmetry of the model. Thus any two- 
dimensional Hamiltonian of the form 

where V ( 8 )  has period 27r but can otherwise be chosen to facilitate the theoretical 
analysis, should exhibit quantitatively similar results to the planar model. To a certain 
extent, this idea is supported by the results of JosC et a1 (1977), in particular with 
regard to the Villain (1975) model defined by 

Two other models have also received attention in recent years as ‘simpler’ models 
with which to explore the 0(2)-symmetric universal class. These are the step model 
(Guttmann et a1 1972) defined by 

and what we shall call the truncated modelt (Domany et a1 1981) defined by 

e x p [ V ( @ ) ] = l + x  cose. (1.5) 

Both these models were motivated, in part, by a desire to simplify the derivation of 
high-temperature series expansions for O(2) models. The truncated model has, 
however, more recently been used by Nienhuis (1982) to derive exact results for the 
critical temperature and thermal exponent of O ( n )  models on the hexagonal lattice 
for - 2 s n  s 2 .  

The O ( n )  analogue of (1.5) is defined by 

exp[V(s, s’)] = 1 f x s  - S I ,  (1.6) 
where2 and s ’  are n-component unit vectors. Nienhuis actually normalises so that 
1s I = dn. Hence his result (see also Domany et a1 1981) for the critical temperature 
corresponds to x, = 42, which is unphysicalS in the sense that exp[ V ( e ) ]  is not strictly 
positive for all 8. Whether this is a serious deficiency is unclear. Nor does Nienhuis’s 
method of solution reveal whether the transition at x, is to a massless phase. Here 
we explore these questions by considering the effect of a Migdal transformation on 
(1.5). While our results are derived for the square lattice rather than the hexagonal, 
we find that (1.5) exhibits no fixed line for physical values of x ( O S X  s l), but for 
x b 1.5 the model does iterate to an apparent fixed line. 

The step model has also been extensively explored by series methods in both two 
and three dimensions (Guttmann and Joyce 1973, Guttmann and Nymeyer 1978). In 
three dimensions, estimates of the susceptibility exponent agree with that of the planar 
model, but in two dimensions the latest work (Guttmann and Nymeyer 1978) finds 

+This  model should not be confused with the truncation of the quantum Hamiltonian analogue of the 
planar model introduced by Luther and Scalapino (1977 j, and subsequently studied by Barber and 
Richardson (1981), Richardson and Hamber (1981) and den Nijs (1982). While the Euclidean equivalent 
of this truncated quantum Hamiltonian is unknown, it is not (lSj, despite a claim (Richardson and Hamber 
1981) to this effect. 
iNienhuis’s result is similarly unphysical for all 2 2 n  an,= 1.6. 
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no evidence of either a conventional algebraic singularity or the essential singularity 
expected at a Kosterlitz-Thouless transition. This conclusion is supported by the 
results reported here, no evidence of a fixed line being seen under Migdal transforma- 
tions of (1.4). A ‘fixed line’ can, however, be recovered if the step in (1.4) is moved 
from x / 2  to xS with S < k. 

The paper is arranged as follows. In P 2, we derive the Migdal-Kadanoff recursion 
relations for an O(2) Hamiltonian and discuss the role that the Villain model plays 
as an ‘almost’ fixed line. Our derivation differs from that given by Jose et a f  (1977) 
in that we define a bond-moving scheme so as to yield isotropic recursion relations 
for finite spatial rescaling. This facilitates the numerical studies reported in 5 3. The 
paper closes with an overall summary in 8 4, in which we try to assess the significance 
of our results beyond the context of the Migdal approximation. 

2. Migdal recursion relations for O(2) Hamiltonians 

2.1. Derivation 

Consider an 0(2)-symmetric Hamiltonian 

-PH = v(e, -e,) 
( i J i  

(2.1) 

defined, for convenience, on a square lattice. The potential V ( e )  will be assumed to 
satisfy 

(i) V ( e )  = V ( - @ ) ,  (ii) V(e)  = V ( 0  + 2 x j ,  (iii) V ( 0 )  = 0, (2.2) 

with V(6) continuous at f? = 0. Define a Migdal-Kadanoff transformation by bond 
moving as shown in figure 1. Clearly, the spatial rescaling factor b = 2 and the 
renormalised potential is given by 

(2.3) 

where A is determined so that v(0) = 0. It is more convenient to work with the 
Boltzmann factor 

f(@) =exp[V(@)l,  (2.4) 

-0- 0- 

Figure 1. Isotropic bond moving scheme to define Migdal transformations. Sites marked 
x are integrated out in the transformation. 
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normalised so that f ( 0 )  = 1. In terms o f f ,  the recursion relation ( 2 . 3 )  then reads 

As mentioned earlier, the bond-moving scheme shown in figure 1 differs from that 
used by JosC eta1 (1977)  and yields an isotropic recursion relation without the necessity 
of taking the limit b -f 1. However, the recursion relation (2 .3 )  is identical to that 
obtained by Jose et a1 (1977)  with b = 2 for the interaction in the y direction, V,(e), 
that for the interaction in the x direction, V,(6), being different. Thus we expect and 
confirm in S: 3 that the numerical results reported by JosC et a1 for the planar rotor 
model are reproduced by ( 2 . 5 ) .  

Following Jose et a1 (1977)  we can easily implement ( 2 . 5 )  in the space of Fourier 
coefficients of f ( 6 ) .  Let 

where 

It is straightforward to show that 
m 

f 2 ( e )  = bo + 2 1 bl cos 16, 
1=1 

where 

Thus, by the Parseval relation, 

with 

(2 .9 )  

(2 .10)  

( 2 . 1 1 )  

the numerator in ( 2 . 1  1) ensuring that f ( 0 )  = 0. 

2.2. Numerical implementation 

Provided the Fourier coefficients ck approach zero sufficiently rapidly as k increases, 
(2 .5)  can be directly evaluated via (2 .9 )  and (2 .11) .  However, it is more convenient 
if the continuous 0(2)-symmetry of the Hamiltonian (2 .1 )  is replaced by a discrete 
Z,-symmetry with large p .  This is equivalent to sampling f ( e )  at p equally spaced 
points in  [ 0 , 2 ~ ] .  The required computation can then be performed by fast Fourier 
transform (FFT) techniques (see e.g. Hamniing 1973). 

Let 

4 = 2Ti/p, j = O , l ,  . . . )  p - 1 ,  (2.12) 
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and 

n =p/2  (2.13) 

where p is even. (The number of sample points may be taken as odd, in which case 
n = ( p  + 1)/2 and the last term in (2.14) is multiplied by 2. However, FFT techniques 
are most easily implemented with p even.) We can then write (see Hamming 1973) 

n - 1  
f 2 ( B ) = f i ( @ ) = a o + 2  ak cos k e + a n  cosn19, (2.14) 

k = l  

with 
P - 1  

j = O  
a k  = ( l / p )  C f 2 ( B j )  COS kBj, k =0 ,  1 , . . . ,  n. (2.15) 

Substituting (2.14) in (2.5) and replacing the integral by a sum over the Bj’s yields 

(2.16) 

on the basis of which the transformation can be iterated. 
Several comments on this method are appropriate. While (2.14) is exact at the 

sample points Oi, (2.16) is not, the rate of convergence of fp to f ( 0 )  being governed 
by the behaviour of ck for large k. On the other hand, viewed as a transformation of 
the Z,-symmetric system, (2.16) is an exact representation of the Migdal transforma- 
tion, This replacement of a continuous symmetry by an appropriate discrete symmetry 
is common in numerical calculations on systems with continuous symmetries (see e.g. 
De Grand and Toussaint 1980). In addition, it is known that Z, systems for p > 5 
exhibit a fixed line (Elitzur et a1 1979, Cardy 1980) and for large p behave qualitatively 
like the full 0(2)-symmetric system except at very low temperatures (ksT 6 47r2/p2). 
This is borne out by our calculations; there is no significant change in our results for 
p B 64. Most of the calculations reported were performed with p = 128, these differing 
by less than 0.1% from those obtained with p = 256. 

2.3. The Villain model 

In  our notation, the Villain model is most easily defined via its Fourier coefficients. 
Thus we write 

c2 

f , ( e )  = 1 + 2 1 exp(-k2/2K) cos ke, 
k = l  

(2.17) 

omitting for the moment the normalisation to f v (0 )  = 1. (The equivalence of this 
expression with (1.3) follows from the results of Jose et a1 (1977); see also Bellmann 
11961, p lo).) Figure 2 shows this potential as a function of 8, together with one 
iteration under (2.5) for K = 0.2, 1.2 and 2.2. For K = 1.2 and 2.2, fv(e) is at least 
to graphical accuracy apparently a fixed-point solution of (2.5). To determine whether 
f v ( 8 )  is actually a fixed point of (2.5), we evaluate analytically the mapping defined 
by (2.5). 

The function fv(e), defined by (2.17), is a theta function (see e.g. Whittaker and 
Watson 1978, Bellmann 1961). Explicitly 

fm = e,(%, 4 / e 3  (2.18) 
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where 

K = 0 2 , / = 0  

f 

- 

0 0 2  0 4  5 6  08 10 
9 i n  

Figure 2. Villain model for K = (3.2 ( -  - -), 1.2 and 2.2 together with fint iterates (-) 
under the Migdal transformation. For K = 1.2 and 2.2, the iterates are indistinguishable 
from the original curve. 

We shall also require one other theta function, namely 
.x 

e4(z,  4 )  = 1 t 2  1 ( - ) k q k 2 ~ ~ ~ 2 k ~ .  
k = l  

(2.19) 

(2.20) 

(2.21) 

(2.22) 

For brevity, the dependence on q will henceforth be suppressed and we shall also, as 
in 12.18), write 0, = @ , i O ) = @ , ( O , q ) .  Both 0 3 ( z )  and H4(z)  are periodic functions of z 
with period 7. In  addition 

(2.23) 1 
o i ( Z  + J = 84( I  ). 

Iterating (2 .18)  under (2 .5)  yields the renormalised function 

f;w = g ( W g ( o ) ,  (2.24) 

where 

g ( ~ ) = 2  du e : ( u ) e : ( ~  - U ) =  d u [ e h  - u ) e : w + e h ) e : ( z  - U ) ] ,  (2.25) 

the second equality following from (2.23) since the integrand is periodic with period 
r and the integration interval is a full period. To evaluate (2.25) we make use of the 
identity 

lor 6: 

0%5(2~)0~(2y  + e,'e4(2x )o4(2y)  = eS (X + y ~ e :  (X - y )  + e,' IX + y w,' (X - y ), (2.26) 

which follows from the fundamental Jacobi formulae given on pp 467-8 of Whittaker 
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and Watson (1978). Setting x =iz, y = U -42 and substituting (2.26) in (2.25) gives 
(2.27) g(z  = &e3(z)  + e:e4(z 

(2.28) 

(2.29) 

(2.30) 

@(e)  = e,(4e)/e3. (2.31) 

Clearly f ; ( O )  is not identical to f v ( e )  except at e = 0, which is determined by 
normalisation. To quantify the extent that f v  and f differ, we introduce the infinite 
product representations of the theta functions (Whittaker and Watson 1978, p 470). 
Hence 

y = f i (  1-q2"-' ) 
n = l  l+q2""  ' 

1-2q2"- 'cosz+q4"-2 
@ ' ( = ? I =  n ( l + q 2 n - 1 ) 2  3 

n = l  

(2.32) 

(2.33) 

where q = e-K'2, which tends to unity as K +CO (T  + 0) so that the products are slowly 
convergent. However, an application of Jacobi's imaginary transformation (Whittaker 
and Watson 1978, p 476) yields 

(2.34) 

w h e r e q ' = e x p ( - 2 r 2 K ) + O a s K + a .  Infact,for a l lO<K<co,  

0 < y < 2 exp(-r2K/2) ,  (2.35) 

while from (2.28) 

@(z)<@(7T)= 1. (2.36) 
Hence 

Af  = /Ifv(@) -fV(@)h = o~;$(@)-fvce,i y 2  4 exp(-.rr2K) (2.37) 

for all K. This result together with (2.29) confirms, somewhat more rigorously and 
in a different norm, the conclusion of JosC et a1 (1977) that the Villain model is not 
a fixed line of the Migdal recursion relation 12.5) but fails only exponentially, the 
bound (2.36) being essentially zero for K 3 1.0 (4 exp(-.rr2) - 2 x 

As is evident from figure 3, the bound in (2.32) is a rather accurate estimate of 
the failure of the Villain model to be a fixed line for all K b 1. Other measures, such 
as the root-mean-square error 

2 n  1 / 2  

IIA - fV / l2  = (1 (fv(e) - f v ( e ) ) 2  d e l z r )  
0 

behave similarly, l l f v  - f v l 1 2  as expected being slightly smaller 

(2.38) 
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0 1 0  2 0  
K 

Figure 3. Natural logarithm of the maximum norm of f v  and f v  as a function of K. The 
broken curve is the theoretical bound (2.32). 

3. Numerical results 

In S; 2 we saw that the Villain model fails only narrowly to be a fixed-line solution of 
the Migdal recursion relation (2.5). However, when analysed on a graphical scale, 
the Villain model appears as a fixed line of (2.5), corresponding to the expected 
massless low-temperature phase of an 0(2)-symmetric model. In the light of this 
observation we now wish to use (2.5) to explore the behaviour of some other specific 
O(2)-models by enquiring whether, under iteration, these models converge in a similar 
way to a ‘fixed line’ for sufficiently low temperatures. 

Specifically we consider: 
( i )  the planar model 

fJ@) = exp[K(cos 6‘ - l)], (3.1) 

(ii) the truncated model 

(iii) the step model 

(iv) the line model 

Note that the step model has been generalised to allow an arbitrarily positioned ‘step’. 
The physical significance of this modification will be discussed below. The line model 
is of interest both because of its simplicity and because its behaviour under the Migdal 
transformation is very similar to the truncated model. 
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3.1. The planar model 

The behaviour of the planar model (3.1) under (2.5) has, of course, been discussed 
in some detail by Jost et a1 (1977). Here our interest is simply to review its behaviour 
so as to establish a benchmark against which to compare and contrast the behaviour 
of the other models. 

Figure 4 shows the behaviour of the planar model under (2.5) for K = 0.5 and 
K = 2.0. Iterations for K = 0.5 clearly drive the Boltzmann weight f(6’) to unity for 
all 6’ corresponding to the infinite-temperature fixed point, while for K =2.0,  a 
non-trivial ‘fixed function’ is approached. The behaviour shown for K = 0.5 is typical 
of that seen for K s 1, while K = 2.0 is typical of the behaviour seen for K B 1 except 
that the limiting function depends upon K as expected of a fixed line. The limiting 
functions can be fitted to the Villain model (Jost et a1 1977). 

0 02 0 4  0 6  0 8  1 0  
6 in 

Figure 4. Successive Migdal iterations (labelled by [ )  of the planar rotor model for K = 0.5 
and K = 2.0. Note the apparent convergence in the latter case to a ‘fixed‘ function. 

If we accept as a criterion of convergence three successive iterations differing by 
less than 10-~inmaximumnorm,llfk -fk+lll=maxoGosw /fk(@)-fk+l(@)I, then theonset 
of the massless phase occurs for K = K, 5 1.0. While this estimate is in fair agreement 
with that (K, = 1.12 k0.04) obtained from Monte Carlo calculations (Tobochnik and 
Chester 1979) on (3,1), it should be stressed that it is rather subjective. Ultimately, 
(3.1) for all values of K iterates to the infinite-temperature fixed pointf= 1. Neverthe- 
less, the Migdal approximation clearly distinguishes the low-temperature phase of the 
rotor model. 

3.2. The truncated model 

Turning to the truncated model (3.2), we observe that f,(t9) is physical, i.e. f,(@) 7 0 
for all 8, if and only if 0 s x c 1. In this regime, f,(6’) iterates rapidly to f = 1 under 
(2.5), typical results (for x = 0.9) being illustrated in figure 5 ( a ) .  Allowing x to increase 
beyond unity does ultimately yield a ‘fixed line’ similar to that observed in the planar 
model (figure 5(6)). Using the same criterion for the onset of the massless phase as 
in the planar model we estimate x c =  1.5. 
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' O n  

I I 
0 2  0 4  0 6  0 8  1 0  

Bin b i n  

Figure 5. Successive Migdal iterations (labelled by I )  of the truncated model for ( a )  x = 0.9 
and (bi x = 1.8. Note in the latter case, the unphysical nature of f,(S) but the apparent 
convergence to a non-trivial 'fixed' function. 

To my knowledge, no estimates of the critical coupling of the truncated model on 
the square lattice exist. The exact value (Domany er alJ981,  Nienhuis 1982) for the 
hexagonal lattice corresponds in our notation to xc = J 2  which is also, as mentioned 
earlier, unphysical. 

3.3. Step and line models 

Our final results are for the step (3.3) and line (3.4) models. We consider first the 
step model with 6 = i corresponding to the original definition of Guttmann et a1 (1972). 
One iteration of (3.3) with S = under (2.5) yields a line model with 

(3.5) 

Note that for 0 < K < 00, 0 < p < 1, in which range the line model is physical. 
Iterating (2.5), beginning with a line model with p < 1 yields no 'fixed line', all 

values iterating rapidly to f =  1. We conclude that the step model as formulated by 
Guttmann er a1 (1972) is always in a disordered high-temperature phase. The line 
model, on the other hand, does, like the truncated model, exhibit a fixed line for 
unphysical values of p,  namely p > pc = 3. 

The generalised step model can also be iterated once analytically under (2.5) to 
yield a modified line model 

p = (1 - e - 4 K ) 2 / ( ~  +e-8K).  

1 - y 2 / 8 1 / 2 r ( l  + 2yS + y2S) ,  0 c le\ < 2 S r ,  
( 1 + 2 y S ) / ( 1 + 2 y S + y 2 6 ) ,  2sr < / e /  s r ,  (3.6) 7 m  = ( 

where fs(e) = f s ( e  + 2 r ) ,  

y = e  - 1  (3 .7 )  
and S S 4. (A similar result holds for 8 > f but in this regime no fixed line is seen.) 
Subsequent iteration of (2.5) starting from (3.6) yields clear evidence of a 'fixed line' 
for 0.05 6 S 6 0.43. The resulting phase diagram of the step model in the 8-K plane 
is shown in figure 6. For S si, the step model is always disordered, while it appears 
that Kc+ cc as S + 0 (see also the discussion at the end of 9: 4). 

4K 
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3 0, 1 I I 1 

I I I I -2 

6 
0 02 C L  

Figure 6. The phase diagram of the generalised step model in the S-K plane. The full 
curve is the boundary determined by the Migdal recursion, while the broken curve is 
conjectural. 

4. Discussion 

The numerical results described in  4 3 lead to the following conclusions. 
( i )  The planar rotor model has a massless low-temperature phase for K >K,- 1. 
( i i )  The truncated model has a massless phase for s )sc- 1.5, these values of x 

(i i i)  The original step model (Guttniann et a1 1972) is for all K in a disordered 

(iv) The modified step model exhibits a massless phase for all S < S , S ~ .  
( v i  In the massless region all models iterate to a ‘fixed function’ that can be well 

represented by a Villain model. 
The key question is to what extent these conclusions are valid beyond the Migdal 
approximation. 

For the planar model the existence of a low-temperature massless phase is well 
established (Kosterlitz 1974, Jose et ai i977. Hamer and Barber 1981), while the 
conclusion regarding the step model with 6 = is consistent with the latest series work 
(Guttmann and Nymeyer 1978). It would be interesting to explore the generalised 
step models by other techniques. As discussed in 5 3.2, the truncated model has not 
previously been explored on the square lattice, but our results support the assumption 
of Nienhius (1982) that this model is a faithful representation of the Oi2)-symmetric 
universal class. Mereover, the fact that at criticality the model is unphysical does not 
appear to be very significant:. 

It is informative to close by considering these conclusions in the light of the 
Kosterlitz-Thouless (1973) criterion for the stability of the ordered phase to creation 
of free vortices. This criterion is based on an estimate of the incremental free energy 
A f  associated with a spin configuration (vortex) of the form shown in figure 7. 

being, however, unphysical. 

phase. 
1 

+ T h e  conc!usion should be regarded with some care, since the Xigdal transformation (2  51 automaficaL2y 
produces a physical {(e) on one iteration 
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Figure 7. Spin configuration of an isolated vortex of an O(2) Hamiltonian in two 
dimensions. 

Explicitly, for a vortex of radius R in a system of size R 

A f / k B T  - E ( R )  - 2 ln(R/a ), (4.1) 

where the two terms represent the energy and entropy of the vortex respectively. 
Approximating the lattice by a continuum yields 

R 

€(RI  = - 6, 27rrV(AB,) dr (4.2) 

with A$, - l / r  and V(0) the interaction energy as defined in (2.1). If V(8)  - -;PO2 
as 8 + 0 with P = - V”(O), E ( R )  for large R behaves as 

E ( R )  - 7rP ln(R/a) ,  (4.3) 

and thus dominates the second (entropy) term in (4.1) for 7rP > 2, implying the stability 
of the system to the creation of a free vortex. The Kosterlitz-Thouless estimate of 
critical value of P for the onset of the massless phase is thus 

(4.4) 

Applying this criterion to the planar model yields K, = 2/7r = 0.64, while for the 
truncated model we obtain x c  = 2 / ( 7  - 2) - 1.75 .  Both these estimates differ 
significantly from the actual values but it is significant that this simple physical criterion 
also predicts that the truncated model is always disordered for physical values of x. 

The criterion (4.4) cannot be applied to the line model since VI($) is not differenti- 
able at = 0, while for the step model with S 2 i, as observed by Guttmann and 
Nymeyer (1978), E ( R )  = 0; there being no energy cost associated with a spin configur- 
ation of the form shown in figure 7 .  This suggests that free vortices are easily created 
and disorder the system in agreement with the numerical results. However, for S < f, 
the energy of a vortex is still only O(1) in R,  not logarithmic. The only effect of 
decreasing S is to give an energy cost to the core of the vortex; all spins beyond a 
radius ral/7rS can be rotated back to the fully aligned state without any cost in 
energy. Such core effects are not expected to affect the critical behaviour. 

Are our results for the step model with S <; thus an artifact of the Migdal 
approximation? This is possible. On the other hand, if we accept the faithfulness of 
the approximation, it is perhaps significant that whilst the Kosterlitz-Thouless criterion 

P, = - v: (0) = 2/T. 
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(4.4) cannot be applied to either the step model or its first iterate (the line model), it 
can be applied to the second iterate. The resulting phase diagram in the 6-K plane 
is similar to that found within the Migdal approximation (figure 6) but shifted to lower 
values of K. Whether this is a reasonable representation of the phase diagram of this 
model and whether the transition, if it exists, is a Kosterlitz-Thouless transition require 
other techniques. 
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